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Abstract. In this study, we apply the tight-binding method to magneto-electronic properties of the AA-
and ABC-stacked graphites, which are strongly dependent on the interlayer interactions, the magnetic
field, and the stacking sequences. First of all, the interlayer interactions induce the significant changes
in the energy dispersions, the band symmetry about the Fermi level, the overlap between valence and
conduction bands, the band width, and the band-edge states or the symmetry points. Then, the magnetic
field induces the Peierls phase in the Bloch functions and thus strongly affects the energy dispersions of
the Landau Levels, the subband spacings, the energy width, and the special structures in density of states
(DOS). Finally, the stacking sequences dominates over the low-energy band overlap and the anisotropy of
energy bands. The effects mentioned above are exactly reflected in the density of state. Here, DOS exhibits
the 3D, 2D, and 1D characteristics.

PACS. 71.10.-w Theories and models of many-electron systems – 71.20.-b Electron density of states and
band structure of crystalline solids – 71.70.Di Landau levels

1 Introduction

Graphite, which is one of the most important layered
systems, has attracted a lot of theoretical [1–12] and
experimental [13,14] studies. There are four kinds of the
layered graphites, the simple hexagonal graphite (the AA-
stacked graphite) [6], the Bernal graphite (the AB-stacked
graphite) [7,8], the rhombohedral graphite (the ABC-
stacked graphite) [9–11], and the turbostratic graphite
(without the periodical stacking sequence) [9]. The AB-
stacked system is the common structure of the lay-
ered graphite. The natural and synthesized graphites are
found to contain varying amounts of the ABC-stacked
graphite. For example, the magnetic properties of mixed
graphite sample containing increasing volume-fractions,
up to ≈40%, of the rhombohedral phase are investi-
gated [15]. The graphite intercalation compounds, e.g.,
the Li intercalated graphite, might exhibit the AA stack-
ing sequence. The turbostratic graphite might exist in
bad experimental samples. Recently, the appearance of
the AA- and ABC-stacked structures on the graphite
surface, where the graphite superlattices form, has been
reported [16]. And, the monolayer, bilayer, and trilayer
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graphites have been produced due to the progress of the
fabrication [17–21]. Such pure 2D systems are identified
to display very interesting physical properties, e.g., the
novel quantum Hall effect [20–22]. Electronic states and
Landau levels in graphene stacks, including the AB and
ABC stackings, are theoretically studied [23]. The above-
mentioned studies show that the stacking effect influences
the physical properties of these allotropic materials. In this
work, we mainly focus on the magneto-electronic proper-
ties of the AA- and ABC-stacked graphites.

A monolayer graphite has the hexagonal symmetry;
therefore, the low-energy π-electronic structure, due to
the 2pz orbitals, exhibits the special zero-gap characteris-
tic [1]. The linear conduction and valence bands just in-
tersect at the Fermi level, so that the density of states is
vanishing at EF = 0. The free carriers are absent in a
monolayer graphite. There exist the van der Waals inter-
actions between the graphitic layers in the layered sys-
tems. The interlayer atom-atom interactions (the inter-
layer atomic hopping integrals) would play an important
role in the π-electronic properties, e.g., energy disper-
sions, free carriers, and band width. They are different
in the AA- and ABC-stacked graphites, and so are the
π-electronic properties.

Some studies on magneto-electronic properties of
a monolayer graphite [24–26] and the AB-stacked
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graphite [27] are reported. When the graphitic systems
are present in a uniform magnetic field along the z-axis,
the magnetic flux would induce a Peierls phase in the
Hamiltonian. This phase could significantly modify the
π-electronic structures. The previous studies [26] predict
that there are oscillating Landau levels, and complete flat
or partial flat Landau levels. Such Landau levels are fur-
ther reflected in optical properties, e.g., a lot of promi-
nent absorption peaks with the special divergent struc-
tures [26]. The comparison between a monolayer and the
AB-stacked graphites shows that the interlayer interac-
tions not only give rise to the anisotropic energy disper-
sions along the stacking direction but also have a sig-
nificant effect on the magneto-electronic properties on
the graphitic planes, e.g., the change of the feature of
Landau levels, the oscillating period of oscillating Lan-
dau subbands and the feature of DOS. Therefore, the in-
terlayer interactions are expected to have a strong effect
on magneto-electronic properties of the AA- and ABC-
stacked graphites.

To evaluate the electronic structures of the AA- and
ABC-stacked graphites in the presence of a uniform per-
pendicular magnetic field, the tight-binding model is used
in this work. The wave-vector-dependent energy bands,
the butterfly-like energy spectra, and the density of states
are calculated. Besides, we have some discussions about
electronic properties, energy dispersion, band width, band
symmetry about the Fermi level, free carriers, special
points in the energy-wave-vector space, Landau levels or
oscillating Landau levels, and special structures in DOS
systematically. Investigations of the dependence of elec-
tronic properties on the interlayer interactions, the mag-
netic flux, and the stacking sequences are also made in
detail. More importantly, we made several comparisons of
the electronic structures of the allotropic form of graphite,
e.g., the AA-, AB-, and ABC-stacked graphites and a
monolayer graphite. This work is organized as follows. In
Section 2, energy bands are calculated within the tight-
binding model. In Section 3, magneto-electronic proper-
ties are discussed. And conclusions are drawn in Section 4.
Above all, optical spectroscopy and STM could be used to
examine the predicted results.

2 The tight-binding method

A monolayer graphite is composed of the hexagonal car-
bon rings. The identical graphite layers are arranged peri-
odically along the z-axis to obtain the layered graphites.
In this work, we only focus on two kinds of stacking
sequences, AA and ABC. The AA-stacked graphite, as
shown in Figure 1, has the same (x,y) coordinates for car-
bon atoms in every layer. The periodical lengths along x̂,
ŷ, and ẑ are, respectively, Ix = a = 2.42 Å, Iy = 3b/2 =
2.13 Å, and Iz = c = 3.35 Å. A primitive cell contains two
carbon atoms (A and B). The first Brillouin zone of the
3D hexagonal structure, as shown in the inset of Figure 3a,
possesses high symmetric points Γ (0, 0, 0), M(π

a ,
π
3b , 0),

K(4π
3a , 0, 0), A(0, 0, π

c ), L(π
a ,

π
3b ,

π
c ), and H(4π

3a , 0,
π
c ).

Fig. 1. The geometric structure of the AA-stacked graphite.
All the atomic interactions are also shown.

The tight-binding model is used to calculate the π-
electronic structure of the AA-stacked graphite. The Bloch
function is:

Ψh
k (r) = aΨk,A(r) + bΨk,B(r), (1)

in which h represents the subband index. The two tight-
binding functions, which are the linear superposition of
the periodical 2pz orbits (ψ’s) on all layers, are expressed
as

Ψk,A(B)(r) =
∑

Rj

aj e
i(k ·Rj)ψA(B)(Rj − r − τA(B)). (2)

Rj is the 3D periodical position vector, and τA (τB) is
the position vector in a basis. Two kinds of atom-atom
interactions are taken into account. First, the interaction
associated with the same atom is the site energy. It is set to
zero for the AA-stacked graphite. Second, the interactions
between different atoms correspond to the atomic hopping
integrals αi’s. α1(α2) is the interaction between two A
atoms from the two neighboring (next-neighboring) layers.
α0(α3) represents the hopping integral between A atom
and B atom from the same layer (the two neighboring
layers). Their values are: α0 = 2.569 eV, α1 = 0.361 eV,
α2 = 0.013 eV; α3 = −0.032 eV [8]. The Hamilto-
nian, which is built in the subspace spanned by the two
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tight-binding wave-functions Ψk,A and Ψk,B, is given by

HAA(φ = 0) =
(

α1β + α2(β2 + 2) (α0 + α3β)f(kx, ky)
(α0 + α3β)f∗(kx, ky) α1β + α2(β2 + 2)

)
, (3)

where φ is the magnetic flux. β = 2 cos(kzc) and
f(kx, ky) = eikyb + 2e−ikyb/2 cos(kx

√
3b/2). The eigenval-

ues of equation (3), the energy dispersions, are:

EAA(kx, ky, kz;φ = 0) = α1β + α2(β2 + 2) ± (α0 + α3β)

×
√

1 + 4cos(3kyb/2)cos(kx

√
3b/2) + 4cos2(kx

√
3b/2)

(4)

The switching-off of the interlayer interactions (α1, α2,
and α3) allows us to obtain the energy dispersions of a
monolayer graphite, which are:

E(kx, ky;φ = 0) =

±α0

√
1 + 4cos(3kyb/2)cos(kx

√
3b/2) + 4cos2(kx

√
3b/2).

(5)

The AA-stacked graphite is present in a uniform magnetic
field B perpendicular to the periodical planes. This field
would induce a Peierl’s phase in the Bloch function, as
expressed by

Ψk,Ai(r) =

∑

j

aje
−i[k · R +

e
c�

∫
A(Rj, r) · dr ]

ψAi,j(Rj − r − τA).

(6)

The vector potential in the Landau gauge is chosen as
A = (−By, 0, 0). The magnetic flux through a hexagon
is assumed to be φ = φ0/q, where q is a nonzero in-
teger number and φ0 = hc/e = 7.89 × 104 TÅ

2
is the

magnetic flux quantum. The magnetic flux causes a new
periodicity with period q times that of the tight-binding
functions in equation (2). A primitive unit cell, which in-
cludes the q zigzag lines along the y-axis in a graphitic
plane (Fig. 1), has 2q carbon atoms. The first Brillouin
zone along the kx-axis is reduced to 1/q of that with-
out φ, changing from the hexagonal structure into the or-
thohomic structure, where the high symmetric points are
Γ (0, 0, 0),X

′
( 4π
3qa , 0, 0), M( 4π

3qa , 0,
π
c ), and Y (0, π

3b , 0), re-
spectively (Fig. 4a). Based on the 2q’s tight-binding func-
tions, the φ-dependent Hamiltonian matrix of the AA-
stacked graphite is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

HI(1) HJ 0 · · · 0 H∗
J

H∗
J HI(2) HJ 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . H∗
J HI(m) HJ

...

0
. . . . . . . . . . . . . . .

HJ 0 · · · 0 H∗
J HI(q)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

in which HI(m) or HJ is a 2 × 2 matrix. m = 1, 2, 3,...q
denotes the mth zigzag line. The periodical boundary con-
dition H∗

J (q+1) = HJ(1) is included in equation (7). The
2× 2 HI(m), which is spanned by the two Bloch functions
associated with A atom and B atom (or two A atoms)
from the same or different layers (the different layers) in
the mth zigzag line, is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HI(m)11 = α1β + α2(β2 + 2)

HI(m)12 = 2(α0 + α3β)e−ikyb/2cos[kxa/2−π(m−[q])φ]

HI(m)21 = 2(α0 + α3β)eikyb/2cos[kxa/2−π(m−[q])φ)]

HI(m)22 = α1β + α2(β2 + 2),
(8)

where [q] = (q + 1)/2 is to set the origin at the center
of each period q in each graphite layer. The diagonal ma-
trix elements HI(m)11 and HI(m)22 are related to two
atoms with the same (x, y) coordinate, so they are iden-
tical to those of without the magnetic flux. πφ in equa-
tion (8), which is the Peierls phase caused by the magnetic
flux through one half of hexagon [26], is reflected in the
nondiagonal matrix elements HI(m)12 and HI(m)21. No-
tably, the magnetic flux changes the phase from kxa/2 to
[kxa/2 − π(m − [q])φ]. The HJ matrix comes from two
atoms in the neighboring zigzag lines. The diagonal and
nondiagonal matrix elements, HJ,11,HJ,22, and HJ,12, are
vanishing. The only nonzero matrix element, which is the
interaction between atom Am and atom Bm± 1, is

HJ,21 = (α0 + α3β )e−ikyb. (9)

In the absence of the interlayer interactions, equations (7)–
(9) describe the magneto-electronic properties of a mono-
layer graphite subjected to a perpendicular magnetic
field [25,26].

The geometric structure of ABC-stacked graphite is
shown in Figure 2. Half of the atoms are directly be-
low the atoms in the adjacent layer and meanwhile di-
rectly above the hexagonal ring centers. This structure
can be derived from the hexagonal structure by slipping
every third layer. The periodical lengths along x̂ and ŷ
are, respectively, Ix = 2.42 Å, and Iy = 3b

2 = 2.13 Å,
the same as those in AA-stacked graphite. However, the
periodical length along ẑ is equal to 3c = 10.05 Å. A
primitive unit cell has six carbon atoms. The symmetric
points are Γ (0, 0, 0), M(π

a ,
π
3b , 0), K(4π

3a , 0, 0), A(0, 0, π
3c),

L(π
a ,

π
3b ,

π
3c ), and H(4π

3a , 0,
π
3c).

The tight-binding model is also used to evaluate
the magneto-electronic structure of the ABC-stacked
graphite. The site energy is zero, and the atomic hopping
integrals βi’s are as follows (Fig. 2). β0 represents the in-
teraction between atom A and B on the same layer. β4 is
the interaction between the two atoms A (or two atoms B)
from the two neighboring layers. When the atom A and B
from the two neighboring layers have the same (x, y) co-
ordinate, the interlayer interaction between them is β1. If
not, it is β3. The parameters β2 and β5 describe the inter-
action between two atoms A, two atoms B, or atom A and
B from the two next-neighboring layers. The interaction
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Fig. 2. Same plot as Figure 1, but shown for the ABC-stacked
graphite.

is β2 when atom A and B have the same (x, y) projec-
tion, and is β5 otherwise. The values of interactions are:
β0 = 3.16 eV, β1 = 0.36 eV, β2 = −0.02 eV, β3 = 0.32 eV,
β4 = −0.03 eV, and β5 = 0.013 eV [9]. The Bloch function,
the superposition of the six tight-binding functions, is

Ψh
k (r) = a1Ψk,A1 + b1Ψk,B1 + a2Ψk,A2

+b2Ψk,B2 + a3Ψk,A3 + b3Ψk,B3 . (10)

In the basis of the Bloch function, the Hamiltonian matrix
of the ABC-stacked graphite is

HABC(φ = 0) =

⎛

⎝
HA HB HC

HC HA HB

HB HC HA

⎞

⎠ , (11)

in which Hi denotes 2 × 2 matrix. The nonzero elements
of HA are {

HA,12 = β0f(kx, ky)
HA,21 = β0f

∗(kx, ky), (12)

and those of HB (=H∗
C) are

⎧
⎪⎪⎨

⎪⎪⎩

HB,11 = (β4e
ikzc + β5e

−ikz2c)f∗(kx, ky)
HB,12 = (β1e

ikzc + β2e
−ikz2c)

HB,21 = (β3e
ikzc + β5e

−ikz2c)f(kx, ky)
HB,22 = (β4e

ikzc + β5e
−ikz2c)f∗(kx, ky).

(13)

The tight-binding function in the presence of the magnetic
flux (φ = φ0/q) is similar to that in equation (7). The
Hamiltonian matrix, which is built from the extended 6q’s
tight-binding functions, is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

HI(1) HJ(1) 0 · · · 0 H∗
J (q)

H∗
J(1) HI(2) HJ(2) 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . H∗

J (m) HI(m) HJ (m)
...

0
. . . . . . . . . . . . . . .

HJ (q) 0 · · · 0 H∗
J(q) HI(q)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

in which HI or HJ is a 6 × 6 matrix. The periodical
boundary condition is H∗

J (q + 1) = HJ(1). HI is spanned
by the six tight-binding functions. It is associated with
the interactions between two atoms in the mth zigzag
line, from the same layer, the neighboring layers, or
the next-neighboring layers. The nonzero elements of
Hermitian HI (HJ ) are shown in the Appendix.

3 Magneto-electronic properties

The two-dimensional band structure of a monolayer
graphite (Eq. (5)) is first reviewed. The occupied valence
(π) bands are symmetric to the unoccupied conduction
(π∗) bands about the Fermi level EF = 0. The low energy
dispersions near the K point are linear and isotropic. Fur-
thermore, the valence and conduction bands just intersect
at EF = 0. Energy bands near the M and Γ points are
parabolic and anisotropic dispersions. They, respectively,
have energies ±α0 and ±3α0 at the M and Γ points. The
band width associated with the Γ point is 6α0. The K,M ,
and Γ respectively belong to the local minimum point, the
saddle point, and the maximum or minimum point in the
energy-wave-vector space. Such special points would in-
duce special structures in the density of states. The DOS
due to the linear bands is vanishing at the Fermi level.
The free carriers are absent, so that a monolayer graphite
is a zero-gap semiconductor.

As shown in Figure 3a, the interlayer interactions play
an important role in the electronic structure of the AA-
stacked graphite. The occupied valence (π) bands are
no longer symmetric to the unoccupied conduction (π∗)
bands about the Fermi level, EF = 0.016 eV. Energy dis-
persions are highly anisotropic; that is, there are stronger
energy dispersions along k̂x or k̂y compared with those
along k̂z. For a fixed kz , energy dispersions in the kx-ky

plane are similar to those of a monolayer graphite. That is
to say, the local minimum point, the saddle point, and the
maximum or minimum point are, respectively, at the zone
corner (K), the middle point between two corners (H),
and the center. The zone corner corresponds to the inter-
secting point of the linear bands; furthermore, conduction
and valence bands in the kx-ky plane are symmetric to
each other about this point. On the other hand, conduc-
tion and valence bands along k̂z (or along the KH line)
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Fig. 3. Energy dispersions of the (a) AA- and (b) ABC-stacked
graphites, and the hexagonal Brillouin zone in the inset.

would overlap each other near the zone corners. The Γ ,M ,
K, A, L, and H points are the saddle points in the energy-
wave-vector space except the maximum energy at the Γ
point and the minimum energy at the A point. The band
width, the energy difference between the maximum energy
at the Γ point (2(α1 + α2) + 3(α0 + 2α3)) and the mini-
mum energy at the A point (−2(α1 − α2)− 3(α0 − 2α3)),
is 4α1 + 6α0.

The low-energy electronic structure with band over-
laps deserves a closer examination here. Such energy dis-
persions are near the zone corners. Along the KH line
(Fig. 3a), the kz-dependent energy dispersion is charac-
terized by 2[α1 cos(kzc) + α2 cos(2kzc)]. State energies of
the K and H points are, respectively, 2(α1 + α2) and
−2(α1 − α2). As for the linear conduction and valence
bands in the kx-ky plane at the intersecting K point, some
valence-band state energies are higher than the Fermi
level. It means that the interlayer interactions induce some
free holes in the low-energy valence bands. The hole den-
sity decreases with the increase of kz ’s. Free holes would
change into free electrons when the state energy of the
intersecting point is larger than the Fermi energy. The
H point has the maximum electron density; that is, this
intersecting point had the lowest energy compared with
the those along the KH line. There are, respectively, hole
and electron pockets near the K and H points. These two
kinds of free carriers have the same density, and they are

expected to play an important role in the essential physi-
cal properties, e.g., optical spectra, electronic excitations,
and transport properties.

Energy dispersions of the ABC-stacked graphite are
shown in Figure 3b. They exhibit the asymmetric struc-
ture about the Fermi level EF = 0.007 eV and the high
anisotropy. For the KMΓK plane of kz = 0, the Γ , K,
and M points are the maximum, local maximum or min-
imum, and saddle points, respectively. In general, energy
dispersions are parabolic except those along the KM line
(kz = 0). There is a small energy spacing for the parabolic
bands along the KΓ line. The linear bands along the KM
line would exhibit the weak overlap between valence and
conduction bands. There are three conduction bands lower
than the Fermi level, while the opposite is true of the three
valence bands. Some free electrons and holes exist simul-
taneously near the K point. Similar energy dispersions
could be found in the HLAH plane of kz = π /3c. How-
ever, the linear bands exist in the HA line, but not the
HL line. The parabolic bands along the HL line exhibit
a small energy spacing.

The stacking effect makes the ABC-stacked graphite
quite different from the AA-stacked graphite in band
structure. As for the former, it has the wider band width
and exhibits the very weak kz-dependence. There exist
double and triple state degeneracies. The K and H points
might exhibit the parabolic energy dispersions and have
the small energy spacings. Valence and conduction bands
overlap very weakly. Free electrons and holes survive at
the K or H point simultaneously, but not at the K and
H points, respectively.

The uniform perpendicular magnetic field, with the
vector potential A = (−By, 0, 0), significantly modifies
band structure of the AA-stacked graphite (Fig. 4). At
φ = φ0/4, the Hamiltonian is an 8 × 8 matrix, and
the period along k̂x is 1/4 of that without the mag-
netic flux. Energy bands are shown along Γ X ′MY Γ by
the bold curves. Those at φ = 0, obtained through the
zone-folding method, are shown by the light curves for
comparison. The kz-dependence of energy dispersions is
hardly affected by the magnetic flux. For example, energy
bands along X ′M could be described by 2[α1 cos(kzc) +
α2 cos(2kzc)]+constant. The magnetic flux only leads to
the rigid shift of the kz-dependent energy bands. The chief
cause is that the perpendicular magnetic field does not
change the phases of the Hamiltonian matrix elements as-
sociated with kz. On the other hand, the magnetic flux
causes the special Landau levels and oscillating Landau
levels for energy bands in the kx-ky plane, e.g., energy
dispersions along Γ X ′ and Γ Y . It should be noted that
the Landau levels might have partial flat or complete flat
energy dispersions. The oscillating Landau levels and the
partial flat Landau levels are, respectively, present at the
low and high energies. Because of the Landau levels, the
band width is drastically reduced by the magnetic flux,
e.g., ED = 14.73 eV (=5.73α0) at φ = φ0 /4. The dimin-
ishing effect is enhanced with the increase of φ. Such an
effect could also be found in the ABC-stacked graphite.
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Fig. 4. Energy bands of the AA-stacked graphite along the
symmetric points of the orthohombic Brillouin zone at (a) φ =
1/4 φ0 and (b) φ = 1/40 φ0.

When the magnetic flux is reduced, there are more
complete flat Landau levels in the kx-ky plane, as shown
in Figure 4b along Γ X ′ and Γ Y at φ = φ0 /40. Only some
oscillating Landau levels survive at the low energy. There
exists an energy spacings between two energy bands near-
est to the Fermi level. However, the strong kz-dependent
energy dispersions make the AA-stacked graphite gapless
or semimetallic. Notably, the AA-stacked graphite remains
semimetallic in the presence of the magnetic flux. The
number of symmetric points is largely enhanced as φ de-
creases. Such special points might be the saddle points,
the local minima, and the local maxima. They would ex-
hibit a lot of special structures in density of states.

The ABC-stacked graphite in the presence of φ also ex-
hibits the Landau levels and the oscillating Landau levels
in the kx-ky plane (Γ X ′ and Γ Y in Figs. 5a and 5b), as
seen in the AA-stacked graphite. However, compared with
those in the AA-stacked graphite (Figs. 4a and 4b), such
levels have the stronger energy dispersions and the wider
magnetoband width. Within the ABC-stacked graphite,
half of carbon atoms in the two neighboring layers have
different atomic positions. Therefore, the magnetic flux
would induce the different phase differences between A
atoms and B atoms in the neighboring layers. The mixing
effect, due to the different phase differences, could explain

Fig. 5. Same plot as Figure 5, but shown for the ABC-stacked
graphite.

why it is relatively difficult to observe the Landau be-
havior in the ABC-stacked graphite. The magnetic flux
would further affect the kz-dependence of energy disper-
sions, e.g., those along X ′M .

The magnetoband structures would exhibit the
butterfly-like energy spectra. The 1/φ- or q-dependent
state energies are shown in Figures 6a and 6b for the Γ
point. There are several discrete states at the high mag-
netic field, e.g., twenty discrete states at φ = φ0 /10. The
energy spacings between two neighboring Landau levels
are not identical to one another. This result means that
the layered electron gas model can not describe the lay-
ered graphite. The discrete states would be getting into
the continuous states as the magnetic field decreases. The
latter are confined within 2.569 eV ≤ Ec ≤ 7.7 eV or
−6.4 eV ≤ Ev ≤ −2.569 eV (−9.1 eV ≤ Ev ≤ −3.9 eV)
for the AA-stacked (ABC-stacked) graphite.

The density of states is very useful in understanding
the essential physical properties, such as optical and elec-
tronic excitations. It is defined as

D(ω;φ) =
2
π

∑

h=c,v

∫

1stBZ

d3k
(2π)3

Γ

[Eh(ω;φ)2 + Γ 2]
, (15)

where Γ = 0.026 eV(=0.01α0) is the broadening energy
width. The special points in the energy-wave-vector space
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Fig. 6. The magnetic-flux-dependent energy spectra of the (a)
AA- and (b) ABC-stacked graphites for the Γ point.

would induce the special structures in DOS. Such struc-
tures directly reflect the main features of energy disper-
sions. They are dramatically altered by the external mag-
netic field. The special structures in DOS could be ex-
amined by the experimental spectroscopies, e.g., optical
spectroscopies and STM.

At φ = 0, DOS of the AA-stacked graphite, as
shown in Figures 7a and 7b, exhibits eight special cusp
structures, which are, respectively, located at −8.73 eV,
−6.81 eV, −3.53 eV, −1.66 eV, 1.66 eV, 3.38 eV, 7.22 eV,
and 8.31 eV. They correspond to the A, Γ , L, M , L, M ,
A, and Γ , respectively. The six points among them are the
saddle points except the minimum energy at the A point
and the maximum energy at the Γ point. All the cusp
structures are associated with the saddle points, the min-
imum, and the maximum in the 3D energy-wave-vector
space. The finite DOS at low energy suggests that the
AA-stacked graphite is a semimetal.

At small φ, DOS exhibits a lot of special struc-
tures, e.g., DOS at φ = 1/40 φ0 in Figures 7a and 7b.
Such structures are divergent in the square-root form.
They come from the Landau levels in the kx-ky plane
or the effective 1D parabolic bands along k̂z (Fig. 4b).
The 1D concave-upward (concave-downward) parabolic
band would lead to the square-root divergences in the

1/
√
ω − Eh

ed (1/
√
Eh

ed − ω ) form, where ω is the fre-

Fig. 7. (a) The density of states of the AA-stacked graphite at
different φ’s. Also shown in (b) are the low-frequency results.

quency and Eh
ed is the state energy at the h subband

edge. The square-root peak structures would group to-
gether as φ grows. When the magnetic flux is high enough,
there are 2q’s groups of peak structures. At φ = 1/4 φ0,
DOS displays four groups of peak structures at ω > 0
or ω < 0. The peak structures at large |ω |’s just cor-
respond to two pronounced square-root divergences, e.g.,
DOS at ω = −7.51 eV and −5.74 eV; ω = 7.22 eV and
6.13 eV. The double-peak divergent structures reflect the
fact that the Landau levels, with large |Eh|’s, are almost
flat (Fig. 4a) in the kx-ky plane, and they have the kz-
dependent energy dispersion due to the interlayer interac-
tions. On the other hand, the low-frequency DOS exhibits
the shoulder or cusp structures, which are related to the
saddle points of the oscillating Landau levels. The oscil-
lating Landau levels occur frequently at the low energy,
so that DOS is largely enhanced.

DOS of the ABC-stacked graphite might differ from
that of the AA-stacked graphite, as shown in Figures 8a–
8b and 7a–7b. At φ = 0, the former is almost equal
to zero at ω ∼ 0, mainly owing to the weaker inter-
layer interactions. It exhibits the logarithmically diver-
gent structures at ω = 3.20 eV and −3.12 eV. The simi-
lar structures could be found in a 2D monolayer graphite
at ω = ±3.16 eV(= ± β0). The main reason is that the
state energies associated with the special points M and L
are almost the same (Fig. 3b). At φ = 1/4 φ0, there are
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Fig. 8. Same plot as Figure 7, but shown for the ABC-stacked
graphite.

eight groups of peak structure in DOS, and several wiggly
peaks exist in each group. These two results further illus-
trate that the Landau levels have the weak wave-vector
dependence in the kx-ky plane (Fig. 5a).

The comparison between a monolayer graphite [26] and
the stacked graphites exhibits that the interlayer inter-
actions have a great influence on the magneto-electronic
properties. A monolayer graphite shows a symmetric mag-
netoband structure about the Fermi level, and so does
the associated DOS. The main feature of magneto bands
is sensitive to the magnitude of magnetic flux φ. At a
small φ, energy dispersions of a monolayer graphite ex-
hibits the 0D Landau levels in the kx − ky plane and,
therefore, DOS shows a lot of delta-function-like peaks.
When the φ is high enough, e.g., φ = 1/4, energy dis-
persions mainly exhibit 1D and 2D characteristics. The
former are the 1D parabolic bands and the latter are the
oscillating energy dispersions. The square-root peaks and
logarithmic divergences, which are respectively associated
with 1D and 2D energy dispersions, can be clearly found
in DOS. The interlayer interactions significantly affects
magnetoband structures of the layered graphites. They
produce the kz-dependent energy dispersions, destroy the
band symmetry about the Fermi level, modify the energy
dispersions in the kx − ky plane, destroy the state degen-
eracy, change the energy spacing, widen the band width,

and alter the symmetry points in the energy-wave-vector
space.

The comparisons with the magneto-electronic prop-
erties of the AB-stacked graphite [27] is also made. At
a strong magnetic field, magneto-band structures of the
AB-stacked graphite exhibit 0D, 1D and 2D features (flat
bands, 1D parabolic bands, and the oscillating bands).
DOS shows the sharp peaks, square-root peaks, and loga-
rithmic divergences, which are related to 0D, 1D and 2D
energy bands. The lower the magnetic field is, the more
Landau levels exist. DOS in the form of delta-function-
like divergences (power-law divergences) below (above)
EF can be found at a small φ. The magnetic flux generates
the Landau Levels and oscillating Landau subbands in the
energy dispersions of the layered graphites. However, the
stacking effects greatly influence the magneto-electronic
properties. First, the layer graphites exhibit the quite dif-
ferent kz-dependent energy dispersions, where the AA-
stacked graphite show the cosine bands (Figs. 4a and 4b)
while the AB- and ABC-stacked graphites exhibit the co-
sine and partial flat bands [27]. Moreover, the stacking
effect affects the magnetoband structures in the kx − ky

plane, e.g., the main feature of energy bands, the oscil-
lating period of the Landau subbands along k̂x or k̂y, the
subband spacings, the energy width, the DOS feature, and
the special structures in DOS.

4 Conclusions

Magneto-electronic properties of the AA- and ABC-
stacked graphites are investigated within the frame of
tight-binding method. The comparisons with a mono-
layer graphite and the AB-stacked graphite are also made.
Magneto-electronic properties are mainly determined by
the interlayer interactions, the magnetic field, and the
stacking sequences. The main features of energy bands
are directly reflected in density of states. The predicted
results could be verified by the STM and the optical spec-
troscopy.

Firstly, the interlayer interactions would change the
energy dispersions, destroy the band symmetry about the
Fermi level, induce the overlap between valence and con-
duction bands, widen the band width, and alter the sym-
metry points in the energy-wave-vector space. Secondly,
the magnetic field introduces the Peierls phase in the
Bloch functions and thus strongly modifies the energy dis-
persions of the Landau Levels, the subband spacings, the
energy width, and the special structures in DOS. When
the magnetic flux is reduced, there are more Landau lev-
els, and the band width is widened. In the presence of the
magnetic flux φ, DOS could exhibit the cusps, the loga-
rithmical divergent peaks, and the square-root divergent
peaks, which, respectively, come from the effective 3D, 2D,
and 1D energy dispersions. The effective 1D Landau lev-
els could induce several groups of peak structure for the
sufficiently high magnetic flux. Thirdly, the stacking se-
quences dominate over the low-energy band overlap and
the anisotropy of energy bands. There are certain impor-
tant differences between the AA-, AB- and ABC-stacked
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HI,12 = H∗
I,21 = 2β0e

−ikyb/2 cos[kxa/2 − π(m − [q])φ]

HI,13 = H∗
I,31 = 2Z1e

ikyb/2 cos[kxa/2 − π(m − [q] − 1/3)φ]
HI,14 = H∗

I,41 = Z3

HI,15 = H∗
I,51 = 2Z∗

1 e−ikyb/2 cos[kxa/2 − π(m − [q])φ]
HI,16 = H∗

I,61 = Z∗
2e−ikyb

HI,23 = H∗
I,32 = Z2e

ikyb

HI,24 = H∗
I,42 = 2Z1e

ikyb/2 cos[kxa/2 − π(m − [q])φ]
HI,25 = H∗

I,52 = Z∗
3

HI,26 = H∗
I,62 = 2Z∗

1 e−ikyb/2 cos[kxa/2 − π(m − [q] + 1/3)φ]

HI,34 = H∗
I,43 = 2β0e

−ikyb/2 cos[kxa/2 − π(m − [q] − 1/3)φ)]
HI,35 = H∗

I,53 = Z1e
−ikyb

HI,45 = H∗
I,54 = 2Z2e

−ikyb/2 cos[kxa/2 − π(m − [q]φ)]
HI,46 = H∗

I,64 = Z1e
−ikyb

HI,56 = H∗
I,65 = 2β0e

−ikyb/2 cos[kxa/2 − π(m − [q] + 1/3)φ],

(16)

graphites such as the low energy dispersion, the state de-
generacy, the energy width, the free carriers, the Landau
levels or the oscillating Landau levels, and the special
structures in DOS. Above all, the Landau levels in the
layered graphites might quite differ from those of a 2D
electron gas.

The authors gratefully acknowledge the support of the Taiwan
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M-165-001.

Appendix

The nonzero elements of Hermitian HI and HJ are shown
as follows

see equation (16) above

where Z1 = (β4e
ikzc + β5e

−ikz2c), Z2 = (β3e
ikzc +

β5e
−ikz2c), and Z3 = (β1e

ikzc + β2e
−ikz2c). Zi’s are re-

lated to the interlayer interactions. ±πφ
3

in equation (A.1)
is due to the coordinate difference in two centers of
the neighboring planes. The nonzero elements of the off-
diagonal matrix HJ are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HJ,13 = Z1e
−ikyb

HJ,23 = 2Z2e
−ikyb/2 cos[kxa/2 − π(m− [q] + 1/3)φ]

HJ,24 = Z1e
−ikyb

HJ,51 = Z∗
1e

−ikyb

HJ,53 = 2Z∗
1e

−ikyb/2 cos[kxa/2 − π(m− 1 − [q] + 1/3)φ]
HJ,54 = Z∗

2e
−ikyb

HJ,61 = 2Z∗
2e

−ikyb/2 cos[kxa/2 − π(m− [q] − 1/3)φ]
HJ,62 = Z1e

−ikyb

HJ,63 = Z∗
3

HJ,64 = 2Z1e
−ikyb cos[kxa/2 − π(m− [q] − 1/3)φ].

(17)
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